
Translating Keyword Commands into Executable Code

Greg Little & Robert C. Miller
MIT CSAIL
32 Vassar St

Cambridge, MA 02139 USA
{glittle,rcm}@mit.edu

ABSTRACT
Modern applications provide interfaces for scripting, but many
users do not know how to write script commands. However,
many users are familiar with the idea of entering keywords
into a web search engine. Hence, if a user is familiar with
the vocabulary of an application domain, we anticipate that
they could write a set of keywords expressing a command
in that domain. For instance, in the web browsing domain,
a user might enter click search button. We call expressions
of this form keyword commands, and we present a novel ap-
proach for translating keyword commands directly into exe-
cutable code. Our prototype of this system in the web brows-
ing domain translates click search button into the Chicken-
foot code click(findButton(“search”)). This code is then ex-
ecuted in the context of a web browser to carry out the effect.
We also present an implementation of this system in the do-
main of Microsoft Word. A user study revealed that subjects
could use keyword commands to successfully complete 90%
of the web browsing tasks in our study without instructions
or training. Conversely, we would expect users to complete
close to 0% of the tasks if they had to guess the underlying
JavaScript commands with no instructions or training.

ACM Classification: H5.2 [Information interfaces and pre-
sentation]: User Interfaces. - Graphical user interfaces; D.3.3
[Programming Languages]: Language Constructs and Fea-
tures; D.2.6 [Programming Environments]: Interactive envi-
ronments; H.5.2 [User Interfaces]: User-centered design.

General terms: Algorithms, Design, Experimentation, Hu-
man Factors, Standardization, Languages.

Keywords: End-user programming, Command languages,
Natural Language Processing, Web automation.

INTRODUCTION
Many modern applications have scripting interfaces. These
interfaces are powerful tools, both for automating tasks within
applications and for coordinating tasks between applications.
Unfortunately, learning to write scripts is a prohibitive bar-
rier for many users. Three factors contribute to the learning

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
UIST’06, October 15–18, 2006, Montreux, Switzerland..
Copyright 2006 ACM 1-59593-313-1/06/0010 ...$5.00.

Figure 1: Illustration of keyword command translation.

problem. First, users must learn to cope with rigid and seem-
ingly arbitrary syntax rules for formulating expressions. The
canonical example is the semicolon required at the end of
each expression in C, but even modern scripting languages
like Python and JavaScript have similar arbitrary syntax re-
quirements. Second, users must often learn several differ-
ent scripting languages and be able to switch between them.
This is necessary because of the wide variety of languages in
use by applications, and it is difficult because the scripting
languages can be very similar, but different enough to cause
problems. Finally, users must learn the Application Program-
mer Interface (API) for the application they want to script,
but API’s can be quite large and it can be difficult to isolate
the portion of the API relevant to the current task. This last
factor is also known as the selection barrier [13].

Much end-user programming research has focused on these
problems. Two notable approaches include programming-
by-demonstration (PBD) and structured editors. The basic
idea behind PBD (e.g. [7, 14]) is to infer a program from
manual actions taken by the user, like a macro recorder.
This approach can be a good first step toward creating a
script, but it is often easier to correct problems and gener-
alize the script using a script editor. Structured editors (e.g.
[1, 10, 11, 17, 24]) can be a good approach for end users
to write and edit scripts, since they force the script to retain
a syntactically correct form. They also often provide menu
systems so the user can recognize, rather than recall, com-
mands. For example, Apple Automator [1] provides a menu
listing the available application commands, and each com-
mand’s parameters can be configured by a graphical user in-
terface. However, structured editors tend to require the user
to think in a certain order, which can be counter-intuitive.
Also, structured editors sacrifice some of the benefits inher-
ent to purely textual environments.

The benefits of purely textual environments are too great
to dismiss outright, even for end-user programming. Con-
sider that text is ubiquitous in computer interfaces. Facilities
for easily viewing, editing, copying, pasting, and exchang-
ing text are available in virtually every user interface toolkit
and application. Plain text is very amenable to editing—it is
less brittle than structured solutions. Also, text can be easily
shared with other people through a variety of communica-
tion media, including web pages, paper documents, instant
messages, and e-mail. It can even be spoken over the phone.
Tools for managing text are very mature. The benefits of
textual languages for programming are well-understood by
professional programmers, which is one reason why profes-
sional programming languages continue to use primarily tex-
tual representations.

The primary hurdle for end-users has been creating textual
expressions that the computer will understand. Previous ef-
forts in this regard have focused on natural language pro-
gramming. Sammet advocated the use of English (or any nat-
ural language) as a programming language as early as 1966
[23]. However, interpreting arbitrary English expressions as
executable code has proven to be a real challenge. A study
by Miller [16] outlines some of these challenges, including
the variety of styles humans use to express ideas.

Because of this, many natural language programming sys-
tems are built around grammars or templates which impose
some constraints on input expressions. Grammar based sys-
tems like NLC [2] use formal languages that read like En-
glish. The problem with these systems is that they do not
permit grammatical errors or extraneous words. Template
based systems like NaturalJava [22] try to overcome these
problems by searching for recognizable language constructs
within an expression. However, these systems still require
the user to incorporate such constructs into their expressions.

Our approach goes one step further by eliminating the need
for language constructs all together, and focuses on the pres-
ence of keywords in a command expression. We call such
expressions keyword commands. Consider the keyword com-
mand left margin 2 inches in the context of Microsoft Word.
To a human reader, this suggests the command to make the
left margin of the current document 2 inches wide. Such a
command can be expressed in the formal language of Visual
Basic as ActiveDocument.PageSetup.LeftMargin = Inches-
ToPoints(2). A prototype of our system can make this trans-
lation automatically from the original keyword command.
(see Figure 1).

Several key points to note are: First, the user did not need
to worry about strict requirements for punctuation and gram-
mar in their expression. For instance, they could have said
something more verbose, like set the left margin to 2 inches,
or they could have expressed themselves in a different order
with 2 inches, margin left. Second, the user did not need
to know the syntactic conventions for method invocation and
assignment in Visual Basic. The same keyword command
would work regardless of the underlying scripting language.
Finally, the user did not have to search through the API to
find the exact name for the property they wanted to access.
They also didn’t need to know that LeftMargin was a prop-

erty of the PageSetup object, or that this needed to be ac-
cessed via the ActiveDocument.

One advantage of this approach over PBD is that it allows
users to create scripts that access functionality they may not
know how to access manually. For instance, assume a user
wants to create 3 columns in their Word document as part
of a script, but they do not know which dialog affords this
change. They would need to discover the proper dialog be-
fore they could demonstrate the command to a PBD system.
However, our approach would allow them to guess a key-
word command like 3 columns, and the system would do the
work of searching through the API to construct an expression
likely to achieve this goal.

This example also illustrates a key drawback of structured
editors. If the user wants to express the command 3 columns
in a structured editor, they need to begin by filling in the first
slot in an expression builder, and this slot is unlikely to ac-
cept the number 3. In fact, they may not know whether to
begin with an assignment template or a function template,
depending on how this particular property is set in the API.
The main point here is that Structured Editors require some
planning on the part of the user toward building their expres-
sion, even if they can pick out the pieces with menu systems.
Our approach relaxes this restriction.

Another advantage of keyword commands over programming-
by-demonstration and structured editors is that it accommo-
dates pure text. This affords all the benefits cited above,
and also allows these expressions to serve as meta-URLs for
bookmarking application states. One virtue of the URL is
that it’s a short piece of text—a command—that directs a
web browser to a particular place. Because they are text,
URLs are easy to share and store. Keyword commands offer
the same ability for arbitrary applications—you can store or
share a small set of keyword commands that will put an appli-
cation into a particular state. On the web, this could be used
for bookmarking any page, even if it requires a sequence of
browsing actions. It could be used to give your assistant the
specifications for a computer you want to buy, with a set of
keyword commands that fill out forms on the vendor’s site
in the same way you did. In a word processor, it could be
used to describe a conference paper template in a way that is
independent of the word processor used (e.g. Arial 10 point
font, 2 columns, left margin 0.5 inches).

To test our idea, we have implemented two prototypes. One
prototype operates in the web browsing domain, and trans-
lates keyword commands into Chickenfoot [6] commands.
These commands allow users to navigate to web pages and
interact with web forms. The other prototype operates in
the domain of Microsoft Word, and translates keyword com-
mands into Visual Basic commands. These commands can
be used to access document properties and issue commands
like Save and Print.

We also conducted a user study of the web domain prototype
to gauge the ability of end users to form keyword commands
on their own, without instructions or training. We chose the
web domain because end users were likely to be familiar with
the capabilities of a web browser.

We found that users were able to generate successful key-
word commands for 90% of the tasks, and that their first at-
tempt succeeded 73% of the time.

The next section addresses related work. This is followed by
a description of the user interface for keyword commands.
After that, we discuss the implementation of the two key-
word command prototypes. Next, we present the user study.
Finally, we end with future work and concluding remarks.

RELATED WORK
Interest in natural programming was renewed recently by
the work of Myers, Pane, and Ko [19], who have done a
range of studies exploring how both non-programmers and
programmers express ideas to computers. These seminal
studies drove the design of the HANDS system, a program-
ming environment for children that uses event-driven pro-
gramming, a novel card-playing metaphor, and rich, built-in
query and aggregation operators to better match the way non-
programmers describe their problems. Event handling code
in HANDS must still be written in a formal syntax, though it
resembles natural language.

Bruckman’s MooseCrossing [3] is another programming sys-
tem aimed at children that uses formal syntax resembling nat-
ural language. In this case, the goal of the research was to
study the ways that children help each other learn to program
in a cooperative environment. Bruckman found that almost
half of errors made by users were syntax errors, despite the
similarity of the formal language to English [4].

More recently, Liu and Lieberman have used the seminal
Pane & Myers studies of non-programmers to reexamine the
possibilities of using natural language for programming, re-
sulting in the Metafor system [15]. This system integrates
natural language processing with a common-sense knowl-
edge base, in order to generate “scaffolding” which can be
used as a starting point for programming. Keyword com-
mands also rely on a knowledge base, but representing just
the application domain, rather than global common sense.

The keyword command implementation, which is essentially
a search through the application’s API, is similar to the ap-
proach taken by Mandelin et al. for jungloids [18]. A jun-
gloid is a snippet of code that starts from an instance of one
class and eventually generates an instance of another (e.g.,
from a File to an Image). A query consists of the desired in-
put and output classes, and searches the API itself, as well as
example client code, to discover jungloids that connect those
classes. Keyword commands must also search the API to
generate valid code, but the query is richer, since keywords
from the command are also used to constrain the search.

Some other recent work in end-user programming has fo-
cused on understanding programming errors and debugging
[12, 13, 20], studying problems faced by end-users in com-
prehension and generation of code [13, 25] and increasing the
reliability of end-user programs using ideas from software
engineering [5, 8]. Keyword commands do not address these
issues, and may even force tradeoffs in some of them. For
example, a keyword command program may be less reliable,
as discussed in the Limitations section later in this paper.

USER INTERFACE
The heart of the user interface is keyword command genera-
tion. The user needs to conjure some command that the com-
puter is likely to understand. Toward this end, the user must
have some idea of the capabilities of the system, along with
the conventional vocabulary used to describe these capabili-
ties (e.g. the white-space surrounding a document is called
the “margin”). Beyond this, our hope is that the system is
natural and intuitive. That is, a user should not have to read
the following sections in order to use keyword commands.

Functions
The user can invoke a function by including keywords in
their command which are present in the name of the func-
tion. For instance, in the example left margin 2 inches, the
word inches appears in the function InchesToPoints. A sin-
gle word is sufficient to identify a function, even if the word
appears in other functions, so long as only one function fits
well into an interpretation of the entire command. The frame-
work also allows functions to have synonyms, giving the user
some slack in remembering the exact name of a function.

The user can also invoke a function without naming it, merely
by including its arguments. This is a sufficient suggestion in
those cases where there is only one function which is likely to
take the given arguments. For instance, consider UIST 2006
into the search textbox. This suggests entering “UIST 2006”
into the textbox labeled “search”, even though we didn’t ex-
plicitly say enter. Our web domain prototype understands
this expression because it has only one command that accepts
a string and a textbox (namely enter).

Basic Data Types
Like functions, the user can also create basic data types by
including keywords in their command which represent these
types. For instance, the user can create the integer 2 with any
of the keywords 2, two, 2nd, second, etc... depending on how
many variations the interpreter has in its database.

Strings themselves are basic data types, and can be created
by just including the words of the string in the command.
However, a sequence of words is considered more likely to
be a string if the user places quotes around it. We discuss this
more below when we talk about resolving ambiguity.

The exact set of basic data types depends on the domain of
the interpreter. Our web domain prototype includes types for
integers, strings, booleans, URLs, and keyword-lists (which
identify objects in the webpage). The Word domain proto-
type includes types for ints, longs, booleans, and strings.

Identifying Arguments
If a command takes multiple arguments of the same type,
then the user may need to supply words in their expression
to identify the arguments. One method is to name the ar-
guments. Argument names can appear immediately before
or after the words used to express the argument. Another
method is to include the arguments in the correct order. For
instance, if we had a click(integer x, integer y) command,
then the system would translate both click 300 y 200 x and
200 300 click into click(200, 300).

Prepositions can serve as intuitive names for some argu-

ments. For instance, the command copy(path toDestination,
path fromSource) allows for expressions like copy A:\my -
paper.doc to C:\my backup. In this case, the arguments are
out of order, but the system picks up on the word to, which is
part of the name for the toDestination argument. In practice,
we include many synonyms for these prepositions to support
variations like copy A:\my paper.doc into C:\my backup.

It is also possible for the system to disambiguate arguments
of the same type based on domain specific heuristics. Con-
tinuing the example above, we could say A:\my paper.doc
C:\my backup copy, where the arguments are out of order,
but we do not provide a preposition. In this case, the sys-
tem can disambiguate the arguments using the heuristic that
if only one argument is a directory, then it is the destination.

Nested Functions
The system supports nested functions. For instance, pick
the 4GB RAM option translates into pick(findOption(“4GB
RAM”)). Note the nested invocation of findOption. The one
restriction regarding nested functions is that a nested function
can only be formed from a contiguous portion of the keyword
command. This example obeys this restriction because 4GB
RAM option is a contiguous string within the command. We
could have also exchanged the order to get option 4GB RAM,
but we could not split up the subexpression to get option pick
4GB RAM.

In some cases, the system may make the correct translation,
even if the subexpression is split. In the case of option pick
4GB RAM, the system fails to find a use for findOption() as
a nested function with no arguments, and so it favors an in-
terpretation involving just the keywords pick 4GB RAM. The
interpreter then introduces the unnamed function findOption,
since the user supplied arguments suggesting this command,
namely 4GB RAM.

Even without this fallback mechanism, this restriction does
not appear to be prohibitive. No users in our study formed
expressions violating this rule (and users correctly formed
31 expressions which could have violated the rule).

Resolving Ambiguity
Sometimes an expression needs to use words in an ambigu-
ous way. The most common example is trying to quote text,
when the text itself contains words with other likely interpre-
tations. Consider enter binary search textbox. Do we want
to enter the word “binary” into the “search” textbox, or do
we want to enter “binary search” into the only textbox on
the page? The system supports a couple of techniques for
resolving such ambiguities.

Quotes: The first technique is to include quotes. When the
system considers the possibility that a sequence of words
represents a string (or keyword-list), it gives this possibil-
ity more weight if the user includes quotes on either side of
the sequence. We could therefore say enter “binary” search
textbox, and the system would favor an interpretation where
“binary” was treated as a string separate from search.

When using quotes, it is not necessary to place escape char-
acters in front of quote symbols which are embedded within a
quote. The system will resolve this ambiguity based on how

many string arguments it requires to form a valid interpre-
tation for the whole command. For instance, the expression
enter ′′history of ′′foo bar′′′′ into the search textbox resolves
to enter(“history of \“foo bar\””, findTextbox(“search”)),
despite the nested quotes in the original expression.

Argument Names: Another technique is to include argu-
ment names to identify an argument, as discussed earlier.
Using this technique we could say enter binary into search
textbox, and the system would favor an interpretation where
the subexpression into search textbox was treated as the into
argument of the enter command.

Selecting From List: When these techniques fail (or the user
fails to employ them), the system is left with an ambiguous
expression. In such a case, it can present the most likely can-
didates to the user for inspection. This is discussed more in
the Feedback and Graphical User Interface sections below.

Extraneous Words
We explained that the system recognizes certain stop words
in certain situations (e.g. to, into), but these are only rec-
ognized if the API designer has incorporated these words
into argument names. Also, the user might include other ex-
traneous words in their expressions. Consider please enter
“search” into the textbox. What is the system supposed to
do with the word “please”? In this case, it ignores it— since
no interpretation of the expression has a good explanation for
the word, the system considers interpretations which simply
overlook it. Note that the system will even overlook words
which identify functions if they are incompatible with the
rest of the expression.

Feedback
It is useful to let the user know what action the computer has
taken in response to a command. One method is to supply a
graphical indication. For instance, when a user clicks a link
in a webpage using a keyword command, our web prototype
animates a green translucent rectangle over the link. This
assures the user that the correct link was chosen.

In some cases, it is not feasible to supply a graphical indica-
tor. In these cases, it is useful to provide textual feedback.
This feedback can come in the form of displaying the result-
ing code generated from the command. Our framework also
provides a mechanism for generating pseudo-natural lan-
guage representations for commands, which end-users may
find easier to read. These interpretations may also act as
guides for future expressions since they are themselves in-
terpretable by the system. For instance, if the user enters the
command 300GB Hard Drive, and the system translates this
to select(findRadioButton(“300GB Hard Drive”)), then the
pseudo-natural language feedback would look like select the
“300GB Hard Drive” radiobutton, which is also an expres-
sion understood by the system.

Textual feedback is also useful when the user enters an am-
biguous command, and the system wants to afford the selec-
tion of an interpretation from a list. In these cases, it may
be easier to represent the alternatives with text, rather than a
graphical indication.

Figure 2: a) command box, b) feedback bar, c) ani-
mated acknowledgement

Graphical User Interface
Our web browser prototype consists of a textbox affording
input, and an adjacent horizontal bar allocated for textual
feedback. The system also generates an animated acknowl-
edgement in the web page around the html object affected by
a command (see Figure 2).

We plan to extend this system with a dropdown menu to
present a list of likely interpretations for ambiguous com-
mands (the current prototype makes an arbitrary choice in
such cases). We also envision incorporating the system into
a script editor as a form of auto-completion. For instance,
if a user types a line of text in the Chickenfoot script edi-
tor that doesn’t parse as JavaScript, the system could present
valid JavaScript interpretations of the expression in an auto-
completion style popup menu.

IMPLEMENTATION
This section describes how keyword commands are trans-
lated into executable code.

Functions
Functions are the building blocks in the system. Each func-
tion returns a single value of a certain type, and accepts a
fixed number of arguments of certain types. Basic data types
are represented as functions that take no arguments. We can
implement optional arguments with function overloading.

Functions can have many names. For instance, the enter
command in the web prototype has names like type, write,
insert, set, and the = symbol. Functions for basic data types
have names corresponding to their textual representations.
These names are matched programmatically with regular ex-
pressions, e.g., integers are matched with “[0-9]+”.

Arguments can also have many names, which may include
prepositions naming the grammatical role of the argument.
We can implement named arguments as functions which take
one parameter, and return a special type that fits into their
parent function.

Translation Algorithm
The translation algorithm needs to convert an input expres-
sion into a likely function tree. We describe it in two steps.

Step 1: Tokenize Input
Each sequence of contiguous letters forms a token, as does
each sequence of contiguous digits. All other symbols (ex-
cluding white space) form single character tokens. Letter
sequences are further subdivided on word boundaries using
several techniques. First, the presence of a lower-case letter
followed by an upper-case letter is assumed to mark a word
boundary. For instance, LeftMargin is divided between the t
and the M. Second, words are passed through a spell checker,
and common compound expressions are detected and split.
For instance, login is split into log in. Note that we apply
this same procedure to all function names in the API, and we
add the resulting tokens to the spelling dictionary.

One potential problem with this technique is that a user might
know the full name of a property in the API and choose to
represent it with all lower-case letters. For instance, a user
could type leftmargin to refer to the LeftMargin property. In
this case, the system would not know to split leftmargin into
left margin to match the tokens generated from LeftMargin.

To deal with this problem, the system adds all camel-case
sequences that it encounters to the spelling dictionary be-
fore splitting them. In this example, the system would add
LeftMargin to the spelling dictionary when we populate the
dictionary with function names from the API. Now when the
user enters leftmargin, the spell checker corrects it to Left-
Margin, which is then split into Left Margin.

After spelling correction and word subdivision, tokens are
converted to all lower-case, and then passed through a com-
mon stemming algorithm [21].

Step 2: Recursive Algorithm
The input to the recursive algorithm is a token sequence and
a desired return type. The result is a tree of function calls
derived from the sequence that returns the desired type. This
algorithm is called initially with the entire input sequence,
and the desired return type void, since we want the command
to do something as opposed to return something.

The algorithm begins by considering every function that re-
turns the desired type. For each function, it tries to find a
substring of tokens that matches the name of the function.
For every such match, it considers how many arguments the
function requires. If it requires n arguments, then it enumer-
ates all possible ways of dividing the remaining tokens into n
substrings such that no substring is adjacent to an unassigned
token. Then, for each set of n substrings, it considers every
possible matching of the substrings to the n arguments. Now
for each matching, it takes each substring/argument pair and
calls this algorithm recursively, passing in the substring as
the new sequence, and the argument type as the new desired
return type.

The resulting function trees from these recursive calls are
grafted as branches to a new tree with the current function
as the root. The system then evaluates how well this new tree
explains the token sequence (see Explanatory Power below).
The system keeps track of the best tree it finds throughout
this process, and returns it as the result.

The system also handles a couple of special-case situations:

Extraneous Tokens: If there are substrings left over after
extracting the function name and arguments, then these sub-
strings are ignored. However, they do subtract some explana-
tory power from the resulting tree.

Inferring Functions: If no tokens match any functions that
return the proper type, then the system tries all of these func-
tions again. This time, it does not try to find substrings of to-
kens matching the function names. Instead, it skips directly
to the process of finding arguments for each function.

Of course, if a function returns the same type that it accepts
as an argument, then this process can result in infinite recur-
sion. We currently handle this by not inferring commands
after a certain depth in the recursion.

Explanatory Power
Function trees are evaluated in terms of how well they ex-
plain the tokens in the sequence from which they are derived.
Tokens are explained in various ways. For instance, a token
matched with a function name is explained as invoking that
function, and a token matched as part of a string is explained
as helping create that string.

Different explanations are given different weights. For in-
stance, a function name explanation for a token is given 1
point, whereas a string explanation is given 0 points (since
strings can be created from any token). This is slightly better
than tokens which are not explained at all—these subtract a
small amount of explanatory power. Also, inferred functions
subtract some explanatory power, depending on how com-
mon they are. Inferring common functions costs less than in-
ferring uncommon functions. Currently, we hard code these
values, but in the future they should reflect an a priori proba-
bility from a corpus of user data.

Web Prototype
The functions in the web prototype map to commands in
Chickenfoot [6]. We include 18 functions, with an average
of 6.4 synonymous names for each function. Many functions
share some of the same names. For instance, make is a name
for the pick function and the enter function. These ambigui-
ties are resolved based on argument types.

Word Prototype
The prototype of the system in the domain of Microsoft Word
presented some challenges which were not present in the web
prototype. First, we were faced with a much larger command
set. Chickenfoot has less than 20 commands, whereas the
Word API has over two thousand. This meant we could not
create all the functions by hand. Instead, we mined Word’s
type libraries, and converted its properties and methods into
functions automatically. However, we were not able to pop-
ulate the system with function synonyms.

We also had to turn off the ability of the system to infer
commands which were not named in the expression if these
commands required additional arguments, since this dramat-
ically increased the search space. However, we were able
to achieve some of the same benefits of inferring commands
with a few modifications to the algorithm.

First, we wanted to be able to infer commands which re-

turned useful objects in the system like ActiveDocument.-
PageSetup, which returns an object containing properties for
margin sizes. (Note that PageSetup is the command, and
ActiveDocument is the argument.) We noticed that most of
these objects were accessible as descendants of either Active-
Document or ThisApplication; hence, we implemented an
algorithm to enumerate all such descendants, and store them
in a list. We then allowed the system to infer commands in
this list as if they took no arguments (since we kept track of
which arguments were required to access each command).

The next modification is best introduced with an example.
Consider the expression columns 2. The desired interpreta-
tion is ActiveDocument.PageSetup.TextColumns.SetCount-
(2), but this requires inferring the command SetCount since
no words from this command appear in the original expres-
sion. However, we note that SetCount has an argument
named NumColumns, and the word Columns does appear
in the expression. Hence, in such cases, we mitigate the need
to infer a command by including function argument names
as synonyms for function names.

The final modification is also motivated by an example. Con-
sider the expression A4, which we want to translate to Active-
Document.PageSetup.PaperSize = wdPaperA4. In this case,
we need to infer the command PaperSize. The way we get
around this is to allow the system to search for commands
with any return type, instead of just commands returning
void. Then, if the return is not void, we try to fit the return
value into some other function that does return void.

In our example, the system returns the function wdPaperA4,
which has the return type WdPaperSize. The system then
searches for a function which takes something of type Wd-
PaperSize as an argument. Remarkably enough, there is only
one such function, namely PaperSize. This function also re-
quires an argument of type PageSetup, but we allow the sys-
tem to fill in such requirements using the list we built earlier,
which supplies the function ActiveDocument.PageSetup.

Speed
We implemented the translation algorithm for each prototype
in Java. The following running times provide a feel for the
speed of this algorithm.

For the web prototype, we used inputs from the user study to
derive an average parse time of 44 milliseconds (on an AMD
Athlon 4200+ processor). Figure 3 shows how the parse time
varies for input sizes of different lengths. From this we can
guess that the average-case running time is polynomial, but
that it is reasonable for inputs up to 8 tokens long (taking less
than 300 milliseconds on average). Note that this seemed
adequate for tasks in the user study since 96% of the user
inputs were 8 tokens or less.

It is also worth looking at the worst-case running time to get
a feel for how different factors affect the search space. Sup-
pose the user’s input has n tokens, and every substring of
tokens matches f functions in the library, each taking a ar-
guments. The first call to the recursive algorithm must try
every way to divide the n tokens into a + 1 substrings in
any order (one for each argument plus the function name it-

Figure 3: The left chart shows the time it took to parse
inputs of various lengths, while the right chart shows
how many samples we had of each length.

self), which is (n−1
a)(a + 1)! = O(ana). And since each

substring matches f functions, this gives O(fana) possibil-
ities for each recursive call. Since the function tree for n
tokens can have at most n nodes (ignoring function infer-
ence), the total search time would be O((fana)n). In prac-
tice, f should be small (tokens match few functions), a is
small (most functions take few arguments), and n is small
(users use few tokens), so this worst case is unlikely to bite.

The Word prototype translates many short expressions (4
words or less) in less than a second, however the running time
increases significantly for longer expressions. It also depends
on the words used. Including multiple words which appear
in many commands can dramatically increase the translation
time. For instance, the expression left left takes 4 seconds.
This already suggests room for optimization in the algorithm;
for instance, making common words like left insufficient by
themselves to invoke any commands.

Our overall conclusion is that the current algorithm is suffi-
cient for small command sets (under 20 commands) where
the user is unlikely to enter large expressions (over 8 words).
However, we believe the algorithm already generates some
very useful results in larger domains, and we want to explore
this potential in future work.

Limitations
The correct interpretation of a keyword command depends
on several factors: the weights and heuristics used for pars-
ing; the set of functions available in the API; and the state of
the application itself. Changes in these factors may change
the way a command is interpreted. For example, typing re-
fresh in the web domain would normally reload the page, but
this interpretation might change if the current web page con-
tains a button labeled “Refresh”. This raises some important
questions for future study.

First, how easy is it to choose weights and heuristics for a
new application domain? It is likely to be impossible to tune
the weights such that every user’s expectations are always
met. Nevertheless, we found that many weights used in the
web prototype worked in the Word prototype as well, with-
out change, which suggests that these weights are relatively
domain independent. Similarly, although some heuristics are
specific to certain basic types, like strings, it is also true that
these types are common to many domains. We are also ex-
ploring learning weights automatically from a corpus of key-
word commands and their desired interpretations.

Second, given that keyword commands may have different

interpretations in different contexts, can users trust the sys-
tem to interpret them without supervision? Can a user re-
execute a script of commands that they wrote earlier, or that
someone else gave to them, and expect the script to work the
same way? The answer is generally yes, in our experience,
but the risk of misinterpretation is not zero. It remains to be
seen whether this risk is greater than other causes of bugs
in user programs, such as encountering unexpected data or
depending on a function whose behavior changes from one
platform or version to another. Nevertheless, keyword com-
mands may pose a tradeoff between ease of use and relia-
bility, which has been a recent research concern in end-user
programming [5]. One solution might be a compiler that con-
verts a keyword command script into a lower-level represen-
tation, so that it can be run unsupervised without fear that its
interpretation will vary.

Finally, how well does this approach scale to larger domains,
with potentially more ambiguity? Human communication
has many strategies for resolving ambiguity, including dia-
logue, shared context, or simply becoming more explicit and
verbose. Many of these strategies will also be useful for
disambiguating keyword commands. The critical technical
challenge for scaling is probably the speed of parsing, which
is an area we’re actively working on.

USER STUDY

We believed that our command language was intuitive, and
could be used without instructions, provided that the user
was familiar with the domain. We therefore chose the web
domain (which many end-users are familiar with) and imple-
mented a command interface to test how well users could use
the system to automate common web browsing tasks.

Participants

Our study involved 9 users, solicited from a public mail-
ing list at a college campus. Seven were between 20 and
30 years old, while the other two were 49 and 56. We had
three females and six males. Five were students (4 of these
were computer science majors). The other four subjects had
a range of occupations. All subjects were compensated for
their time.

The subjects were also all experienced web users, and could
type reasonably well. Almost every subject claimed to use
the web almost every day (except one, who claimed to use
the web a few times a week). Every subject had also been to
the majority of the web sites involved in the study. Finally,
each subject used typing-centered programs (like Word or an
Instant Messenger) almost every day (again except for one,
but even this user felt reasonably comfortable typing).

Programming experience amongst the users was divided into
two groups. Two users had never written a program, and
two had only written a program for a class. Each of the re-
maining five users had written multiple programs on their
own, and was familiar with a number of different program-
ming languages. We shall refer the first four users as non-
programmers, and the last five users as programmers.

Figure 4: Examples of tasks in the user study. The
user had to write a keyword command that would click
or set the control circled in red. The red number is the
task number.

Setup
Each subject sat at a computer loaded with the web domain
prototype. We then handed them a set of instructions to read
and tasks to complete.

Instructions: The instructions indicated that they should use
only the command box (Figure 2a) to do each task, and not
click or type directly into the web page. We also indicated
that it was up to them to decide what to type into the com-
mand box. We did not offer any suggestions about what to
type (except for two users, see Modifications to Study below).

Tasks: Each of the 36 tasks consisted of a red circle drawn
on a screen shot of the web browser, indicating what to do
(see Figure 4). For instance, if we wanted the user to navigate
to a URL, we would circle a location bar loaded with that
URL. We did this in order to minimize external hints about
how the user should communicate with the system.

Even still, the circled text itself acted as a hint for many tasks,
especially for following links and clicking buttons. In these
cases, entering the text on the link or button itself was suffi-
cient to click it. However, we did not tell the subjects that this
was the case, and in fact, users often provided unnecessary
words for these tasks (like the word “click”).

We also included some more difficult tasks that required
words not present in the red circle to complete. However,
every task could be completed with a single keyword com-
mand.

Figure 5: Average number of attempts made to ac-
complish each task (top chart), and average failure
rate (bottom chart).

Modifications to Study: After running 6 users through the
study, we noticed that people didn’t use many verbs. For
instance, subjects tended to enter text into form fields with
expressions like without “nothing” rather than enter “noth-
ing” into the without textbox.

We wondered what effect it would have if we introduced a
single initial suggestion of a command involving a verb. We
decided to provide a hint for a task that every user had suc-
ceeded at (one of the easier tasks). We felt that this wouldn’t
overly contaminate the study, while giving us a small hint to
satisfy our curiosity.

We therefore suggested to 2 users that they do the first task
with go to google.com. One user responded with “who needs
verbs?”, and proceeded to do this task with just google.com.
The other user took the suggestion, and used a verb in 10
tasks that no other user used a verb for, which may be cause
to investigate this further.

Results
We recorded the number of attempts each user made to ac-
complish each task. We also recorded whether they ulti-
mately succeeded, or eventually gave up. Note that we did
not give users a time limit to accomplish tasks, but if they
seemed at a loss for what to do, then we told them that they
could skip the task and move on to the next one. If they did
so, we counted this as giving up.

The non-programmer group succeeded at 84% of the tasks,
and the programmer group succeeded at 95% of the tasks.
(We found this difference statistically significant using a two-
tailed t-test, with p = 0.04.) Each group averaged 1.7 at-
tempts per task. Non-programmers completed 72% of the
tasks on the first try, with only one command. The program-
mers achieved this for 77% of the tasks. If the system under-
stood only JavaScript, and we had offered no instructions, we
would have expected a completion rate around 0% for both
groups.

Figure 5 shows the average number of attempts made to ac-
complish each task (top chart), coupled with the average fail-
ure rate for each task (bottom chart). The tasks with labels
are referenced in the Discussion below.

Discussion
Certain tasks exposed important issues with the system.

Task 1.4: Everyone succeeded at this task, but it exposed an
important problem with the tokenizer. The task was to click
the “OpenCourseWare” link on MIT’s homepage, which the
tokenizer split into 3 tokens. However, this version did not
add “OpenCourseWare” to the spelling dictionary. Hence,
when users would type opencourseware, the system would
not split the token into open course ware, and it would not
match the link. In the new system, typing opencourseware
is corrected by the spell checker into OpenCourseWare, and
the expression is then tokenized correctly.

Task 1.6: This is the first task with multiple failures. The
task asked the user to enter the word “nothing” into a textbox
labeled “without the words.” Only 3 users completed this
task on their first attempt.

All of the remaining subjects expected the system to have
a notion of an input focus. They began the task by trying
to focus the computer’s attention on the appropriate textbox
with commands like go to without the words. We believe
such a paradigm could be made to work within the bounds
of the command language by adding commands like focu-
sOn, focusPrevious, and focusNext (along with appropriate
synonyms, e.g., go). Even still, 3 of these users eventually
succeeded at the task.

Task 1.7: This was really the second part of a two-part task.
The task asked the user to select “Calendar” from a listbox.
After doing so, they were meant to notice that the “Any Sec-
tion” option was still selected in the web page, but not se-
lected in the task illustration. At this point, they were meant
to deselect the “Any Section” option.

Three subjects did not make this attempt, presumably be-
cause they thought it was a bug in the instructions or the
webpage, or they did not notice it. One subject tried to ac-
cess the listbox by focusing the computer’s attention on it,
which, as discussed previously, merits the addition of focus
functions. The final three subjects used keywords which had
not been added as synonyms for the proper functions in the
system. The lesson learned here is that more synonyms need
to be added, but we are encouraged to find that we did not
need to add new functions in this case.

Task 3.4: This task seemed simple: it asked the user to en-
ter a password into a password field. However, it exposed
a bug in our choice of weights for the function scoring sys-
tem. A brief description of this bug should prove instructive.
Consider the input Password bloppy. Five users tried this in-
put, and it should have worked. Instead, the system clicked a
link with the word “password” in it. Both of these interpre-
tations needed to introduce an unnamed command, but the
enter command cost 0.2, whereas the click command cost
only 0.1. Of course, the click interpretation had to treat the
word bloppy as an extraneous word, which cost another 0.1,
whereas the enter interpretation treated bloppy as a string,
costing 0. Both interpretations explained the word password
as a keyword-list identifying a textbox or link.

The resulting score for click(findLink(“password”)) was 0.8,

and the score for enter(“bloppy”, findTextbox(“password”))
was also 0.8. However, the click interpretation happened to
appear first in the list, and the system went ahead with this
interpretation, since the prototype afforded no means of dis-
ambiguation after the command was entered. We patched
this problem by increasing the cost of extraneous words to
0.3, but ultimately we plan to implement the disambiguation
dropdown we discussed.

Task 4.4: This was probably the hardest task in the study.
It required the user to enter the address “PO Box 777” into
the second street address field, shown at the bottom of Figure
4. People had difficulty identifying this field since it had no
label of its own. Five subjects eventually succeeded, but 4
users did not. It is instructive to examine the potential rea-
sons for these failures.

One user tried the approach of first focusing the computer’s
attention, and then typing. This user entered street address 2
and then PO Box 777. It is worth noting that if these com-
mands had been entered as the single expression street ad-
dress 2 PO Box 777, they would have worked. It would also
have worked if we had the focusOn command, along with a
version of the enter command that accepts only a string.

Another user entered 777 Home Drive into the first textbox
successfully, and then issued the command next. This at-
tempt would also have been helped with the addition of focus
commands, specifically focusNext.

This same user also tried what turned out to be a common
approach, which was to try entering both lines with a single
command: 777 Home Drive, PO Box 777 Street address.
In fact, 6 users made attempts of this sort. This is a harder
problem to solve. One solution might consist of an enter
command with 2 string arguments. However, we should note
that all the users who attempted this approach eventually suc-
ceeded, except for two. One would have figured out a way if
the system obeyed focus commands as discussed before. The
other would have succeeded if not for a bug in the parser.
To understand this bug, it is helpful to know that the most
common type of expression that worked was: Street address
2 “PO Box 777” (3 people succeeded with commands of
this sort). Now the expression of the user in question was:
Street2=PO Box 777. The problem is that this version of the
tokenizer treated Street2 as a single token. If the user had
put a space between Street and 2, this command would have
worked. The current prototype now supports this command
by treating alpha and numeric sequences as separate tokens.

FUTURE WORK
We plan to continue to develop this technique in several di-
rections. First, we believe there is a lot of room for improve-
ment to the algorithm, now that we’ve convinced ourselves
that the algorithm is useful. Also, we want to add new fea-
tures to the algorithm. In particular, we would like to support
variable declarations which are referenced in the same com-
mand. This may allow for for-loop constructs.

Another goal is to integrate each prototype into its target do-
main, and test usability. In Chickenfoot, we would like to see
if end-users without JavaScript experience can create simple

scripts. In Word, we would like to test how keyword com-
mands compare with navigating a large menu system.

We also believe the technique may be useful for program-
ming in Java; consider typing time, and getting back System.-
currentTimeMillis(). We believe such translations may be
possible, and useful.

Finally, we would like to explore the potential of using the
translation system as a generic backend for a speech recog-
nition system. We believe that the general framework may
make it easy to expose core sets of functionality of various
applications to end-users.

CONCLUSION
We have scratched the surface of a domain with great po-
tential: translating keyword commands into executable code.
We have described an algorithm for performing such trans-
lations in a reasonable time for small applications, and we
have demonstrated that users can form commands that are
interpretable by the system, without any training.

ACKNOWLEDGMENTS
We would like to thank all the participants in our user study.
We also appreciate all the helpful suggestions we have re-
ceived from the anonymous referees, members of the UID
group, and other friends and peers. This work was supported
in part by the National Science Foundation under award num-
ber IIS-0447800. Any opinions, findings, conclusions or rec-
ommendations expressed in this publication are those of the
authors and do not necessarily reflect the views of the Na-
tional Science Foundation.

REFERENCES
1. Apple Computer. Automator. http://www.apple.com/-

macosx/features/automator/, accessed June 28, 2006.

2. Ballard, B., and Biemann, A. Programming in Natural
Language: NLC as a Prototype. ACM/CSC-ER Annual
Conference, 228-237. 1979.

3. Bruckman, A., Community Support for Constructionist
Learning. Computer Supported Cooperative Work, 7(1-
2), 47–86, Jan. 1998.

4. Bruckman, A., Edwards, E. Should we leverage natural-
language knowledge? An analysis of user errors in a
natural-language-style programming language. CHI ’99,
pp. 207–214.

5. Burnett, M., Cook, C., and Rothermel, G. End-User
Software Engineering. Commun. ACM, 47(9), 53–58,
Sept. 2004.

6. Bolin, M., Webber, M., Rha, P., Wilson, T., Miller, R.
Automation and customization of rendered web pages.
UIST 2005, pp. 163–172.

7. Cypher, A., Ed. Watch What I Do: Programming by
Demonstration. MIT Press, Cambridge, MA, 1993.

8. Erwig, M., Abraham, R., Cooperstein, I., and Kollmans-
berger, S. Automatic generation and maintenance of cor-
rect spreadsheets. ICSE 2005, pp. 136–145.

9. Katz, B., Felshin, S., Yuret, D., Ibrahim, A., Lin, J.,
Marton, G., McFarland, A., and Temelkuran, B. Omni-
base: Uniform Access to Heterogeneous Data for Ques-
tion Answering. NLDB 2002, pp. 230-234.

10. Pausch, R., et al. Alice: A Rapid Prototyping System
for 3D Graphics. IEEE Computer Graphics and Appli-
cations, 15(3), 8–11, May 1995.

11. Kelleher, C. and Pausch, R., Lowering the barriers to
programming: A taxonomy of programming environ-
ments and languages for novice programmers. ACM
Comput. Surv., 37(2), 83–137, 2005.

12. Ko, A.J. and Myers, B.A. Designing the Whyline: A De-
bugging Interface for Asking Why and Why Not Ques-
tions. CHI 2004, pp. 151–158.

13. Ko, A.J., Myers, B.A., and Aung, H. Six Learning Bar-
riers in End-User Programming Systems. VL/HCC 2004,
pp. 199–206.

14. Lieberman, H., Ed. Your Wish is My Command: Pro-
gramming By Example. Morgan Kaufmann, San Fran-
cisco, CA, 2001.

15. Liu, H., and Lieberman, H., Programmatic Semantics for
Natural Language Interfaces. CHI 2005, pp. 1597–1600.

16. Miller, L., Natural Language Programming: Styles,
Strategies, and Contrasts. IBM Systems Journal, 1981.

17. Miller, P., Pane, J., Meter, G., and Vorthmann, S. Evolu-
tion of Novice Programming Environments: The Struc-
ture Editors of Carnegie Mellon University. Interactive
Learning Environments, 4(2), 140–158, 1994.

18. Mandelin, D., Xu, L., Bodik, R., and Kimelman, D. Jun-
gloid Mining: Helping to Navigate the API Jungle. PLDI
’05, pp. 48–61.

19. Myers, B., Pane, J., and Ko, A., Natural Program-
ming Languages and Environments. CACM, 47(9), 47–
52, Sept. 2004.

20. Phalgune, A., Kissinger, C., Burnett, M., Cook, C.,
Beckwith, L., and Ruthruff, J.R. Garbage In, Garbage
Out? An Empirical Look at Oracle Mistakes by End-
User Programmers. VL/HCC 2005, pp. 45–52.

21. Porter, M., An algorithm for suffix stripping, Program,
14(3), pp 130-137, 1980.

22. Price, D., Riloff E., Zachary J., and Harvey B. Natural-
Java: A Natural Language Interface for Programming in
Java. IUI 2000, pp. 207–211.

23. Sammet, J., The Use of English as a Programming Lan-
guage. CACM, 9(3), 228-230. 1966.

24. Teitelbaum, T. and Reps, T. The Cornell program syn-
thesizer: a syntax-directed programming environment.
CACM, 24(9), 563–573, 1981.

25. Wiedenbeck, S., Engebretson, A. Comprehension strate-
gies of end-user programmers in an event-driven appli-
cation. VL/HCC 2004, pp. 207–214.

